

Ground-Water / Surface-Water Interaction Studies in the Spokane River Valley, ID and WA, and the Smith River Watershed, MT

Rod Caldwell
U. S. Geological Survey
Helena, Montana

Overview

- Spokane River and the Spokane Valley / Rathdrum Prairie aquifer
- Methods used in gw/sw interaction studies
- Smith River Watershed study

Gaining Reach

Losing Reach

Objectives - Spokane River GW/SW Study

- Determine if chemical constituents in water and sediment of the Spokane River migrate into the aquifer
- Improve the understanding of GW/SW interaction along a losing reach of the Spokane River

Spokane Valley/Rathdrum Prairie Aquifer

- Sole source aquifer
- Unconfined
- High permeability
- Up to 500 feet thick
- Depth to water a few feet to over 400 feet

Spokane River

- Outflow of Coeur d'Alene Lake
- A source of ground-water recharge
- Elevated metal concentrations in river and bed sediment

Mean Annual Load of Whole-Water Zinc Water Years 1999-2000

Study Methods

- Streamflow data analysis
- Ground-water level measurement
 - Monthly, synoptic, and continuous

- Water temperature measurement
 - Continuous
- Water chemistry
 - Sample collection and analysis

Wells and Gaging Stations

Streamflow and Losses

Monitoring Network

Lynden Road Wells - Water Levels

River Stage and Ground-Water Levels

Water Table 8/2000

Results: Streamflow and Water Levels

- Delineated a losing reach of the river
- Calculated monthly mean losses ranging from 69 to 810 cfs
- Determined hydraulic gradients to and from the river
- Observed both saturated to unsaturated conditions beneath the river
- Observed that near-river water levels responded to changes in river stage

Temperature – River and Ground Water

Temperature – River and Ground Water

Results: Temperature

- Indicated areas of ground-water recharge from the river
- Indicated rapid travel time from the river to the near-river groundwater

Water Chemistry Sampling

- Analyzed for major ions, trace elements, and stable isotopes
- Examine spatial and temporal variation

Specific Conductance

Median TDS (mg/L) WY 2001

Median Zinc (ug/L) - WY 2001

Results: Water Chemistry

- The Spokane River locally influences groundwater chemistry
- Trace-element concentrations were generally lower in the ground water than in the river
- Some constituents (ex. zinc) did not travel as far from the river as others

Overall Result:

Better understanding of the flow system

Tools for GW / SW Interaction Studies

- Ground-water levels
 - Discrete measurements
 - Continuous recorders
- Seepage meters
- Streamflow
 - Seepage runs
 - Continuous recorders
- Tracer tests

- Water temperature
 - Continuous recorders
 - Thermal imagery
 - Longitudinal surveys
 - Fiber Optics
- Water chemistry
- Modeling

Why is heat a good tracer for examining ground-water flow near streams?

- Temperature has become an economical and robust parameter to measure in stream and ground-water environments
- Heat is free of real or perceived issues concerning chemical tracers
- Heat and ground-water transport models have become widely accessible

Temperature - Losing Reach

Temperature - Gaining Reach

Methods used in a Hydrologic Investigation of the Smith River Watershed with an Emphasis on GroundWater / Surface-Water Interaction

U.S. Geological Survey in cooperation with the Meagher County Conservation District

Objectives

- Increase the understanding of the overall hydrologic system
- Increase the understanding GW/SW interaction
 - Delineate and quantify gaining and losing reaches of the Smith River and its tributaries
 - Determine the hydraulic properties of the streambed

Smith River Watershed

Approach – Multiple Lines of Evidence

- Streamflow measurements
 - Discrete
 - Continuous recorders
 - Seepage runs / synoptic measurements
- Ground-water level measurements
 - Monthly
 - Continuous
 - Synoptic
- Temperature
 - Continuous
 - Longitudinal surveys
 - Thermal Imagery
- Water chemistry
- Modeling

Gage Streamflow at Four Locations

Smith River – Longitudinal Survey

Longitudinal Survey Specific Conductance

Thermal Imagery

Thermal Imagery

Streamflow Synoptic Measurements

- Conducted during various flow conditions
- •Flow measured at multiple sites over a short time period
- Inflows and outflows measured
- Differences in streamflow represent gains or losses

Synoptic Ground-Water Level Measurements

- Measure water levels in over 100 wells in a short period of time during the streamflow synoptic
- Water-table maps will be produced to represent conditions for each synoptic

Monitoring Wells

Temperature and Water-Level Monitoring Network

Temperature Profile

Water Chemistry

- Collect samples from wells along inferred ground-water flowpaths and the Smith River
- Analyze for major ions, trace elements, and other environmental tracers

